INTERVENTIONS ADDRESSING TRANSITION DIFFICULTIES FOR INDIVIDUALS WITH AUTISM

HEATHER E. STERLING-TURNER AND SARA S. JORDAN
The University of Southern Mississippi

Transitioning between activities can pose difficulties when working with students with autism. Individuals with autism may resist transitions by exhibiting a host of problem behaviors such as aggression and tantrums. Although scant, there is available research that provides sound recommendations for assessing and intervening for problem behaviors occurring during transition times. The present article presents a summary of the current transition literature, with a special emphasis on interventions for students with autism. Recommendations for the functional assessment and treatment evaluation of transitional difficulties are presented as well. © 2007 Wiley Periodicals, Inc.

All individuals, regardless of disability status or age, must move (i.e., transition) between multiple tasks and activities throughout the day. Transitions occur naturally between activities of daily living (e.g., going from work to home), but they also occur in structured settings, including the educational environment. Researchers have suggested that as much as 25% of preschooler’s and elementary school children’s daily time may be spent in transition activities (Schmit, Alper, Raschke, & Ryndak, 2000). Likewise, most adolescents must transition between classes. Given the number of transitions that occur daily in school settings, it is not surprising that school teachers cite the ability to transition between activities as a crucial skill for students (Schmit et al., 2000).

Authors of teacher education and classroom management texts often address the topic of effective transition planning and make suggestions for teachers to incorporate into their classrooms (see, for example, Henley, 2006; Slavin, 2003; Witt, LaFleur, Naquin, & Gilbertson, 1999; Wolery, Bailey, & Sugai, 1988). Such recommendations include (a) teaching class-wide rules for transitions, (b) providing clear signals and verbal directions, (c) minimizing wait or downtime by transitioning students at one time, and (d) having all materials for the next activity prepared and in place so that the next activity can begin. Although these broad recommendations make sense, there is no evidence that they are empirically based. That is, the general literature examining transition activities in the school setting is limited at best. Additionally, little research exists specifically addressing problem behaviors that students, with or without disabilities, may display during transition times.

The goal of the current article is to present a review of the extant literature regarding transition activities for children and youth with autism, a population for whom transitions may pose unique challenges due to inherent features of the disorder. In addition, educational goals for students with autism often emphasize development of independent living skills, for which appropriate and timely transitioning is essential. But before reviewing specific techniques for addressing transitional difficulties, characteristics of autism and associated transition difficulties will be considered.

Transition Times and the Student with Autism

In addition to difficulties in social relationships and communication, some individuals with autism may exhibit behavioral difficulties associated with changes in routines (American Psychiatric Association, 2000), including transition times. Although not an exhaustive list of possible

Correspondence to: Heather E. Sterling-Turner, Ph.D., 118 College Dr., #5025, The University of Southern Mississippi, Hattiesburg, MS 39406-5025. E-mail: heather.turner@usm.edu

© 2007 Wiley Periodicals, Inc. DOI: 10.1002/pits.20257
behaviors, individuals with autism may resist transitions by exhibiting noncompliance, aggressing toward staff or other students, or engaging in stereotypy and tantrums to avoid changing activities or settings. Obviously, such behaviors may present challenges for the classroom teacher, decrease instructional time, present a danger to the student or others in the educational environment, and ultimately result in placement in a more restrictive educational setting. Additionally, significant problems with transitioning limit an individual’s independence, particularly in community settings (Newman et al., 1995; Schreibman, Whalen, & Stahmer, 2000). Thus, efficient and effective transitions are important for a smooth-paced and well-managed classroom as well as for improving independent, adaptive functioning.

The exact reasons why individuals with autism may resist transitions, either routine or unplanned changes in activities, are unclear. The most commonly referenced explanation is the predictability hypothesis, most often attributed to Flannery and Horner (1994). This hypothesis asserts that individuals with autism have a greater need for predictability in their environments than individuals not diagnosed with autism. Flannery and Horner also suggested that individuals with developmental disabilities, including autism, may not be aware of naturally occurring cues signaling an upcoming environmental change. This lack of awareness, coupled with the characteristic restrictive patterns of behaviors, interests, and activities associated with autism (American Psychiatric Association, 2000), may serve to evoke problem behaviors when children with autism are presented with disruptions to ongoing activities.

As support for the predictability hypothesis, Flannery and Horner (1994) presented results for two adolescent males diagnosed with multiple disabilities, including autism. In both studies, the predictability of upcoming events was manipulated so that either the event was signaled (e.g., modeled or cued in an auditory fashion) or was not signaled. Problem behaviors were lower in the signaled condition for both participants. Further, Flannery and Horner demonstrated that the procedures were effective for both familiar and unfamiliar activities. These results suggest that manipulating environmental events so that the resulting consequence of a behavior is more reinforcing (i.e., an establishing operation) can increase the probability of desired behavior because the transition is more predictable, and thus, less aversive (Flannery & Horner).

Although the predictability hypothesis is a viable explanation for transition difficulties, it does not fully explain why some individuals with autism have problems with consistent, routine transitions. Thus, the educational professional should conduct a thorough and systematic functional assessment, including a functional analysis, to provide additional information as to why the student may be resisting transitions. First, the reinforcing value of an ongoing activity may be higher than the activity to which the individual is moving. Alternatively, the ongoing activity may be neutral in value to the individual, but the second activity may be more demanding and, perhaps, aversive to the individual. Other consequences delivered contingent on problem behavior occurring during the transition time, such as attention or access to preferred items, should be explored as well.

Research examples of interventions based on functional analyses during transition times are few, and none include participants with a diagnosis of autism. Kern and Vорndran (2000) found that the availability of increased adult interaction reduced problem behaviors during transitions from leisure activities to the school setting for a female student with behavior disorders. McCord, Thomson, and Iwata (2001) assessed the effects of activity type (initiation or termination) and location changes on rates of self-injurious behavior for two adults with mental retardation. Resultant data were used to develop and assess intervention affects. Repp and Karsh (1994) demonstrated that attention provided contingent on tantrums during transitions was the maintaining contingency for a student with disabilities. These examples highlight how environmental consequences may affect the reinforcing value of problem behavior during transitions beyond the simple predictability of the transition itself.
Thus, in addition to considering the unique characteristics of individuals with autism that may make them more resistant to environmental changes, environmental variables that may contribute to the maintenance of problem behaviors during transitions also should be explored. That is, functional approaches to assessing and treating problem behaviors during transitions offer insight as well as methodology for assessing individual students’ behavior. The assessment procedures, in turn, suggest treatment recommendations that can be systematically evaluated. In the following sections, a review of the literature addressing treatment approaches to transitional difficulties will be presented along with recommendations for assessing and integrating techniques into the classroom setting.

**Brief Research Review**

As noted previously, the literature base for interventions addressing problem behaviors during transitions specifically involving individuals with autism is quite scant. The majority of research focuses on antecedent interventions in the form of cues or prompts to increase the probability of correct responding (i.e., transitioning without problematic behaviors and within a certain time limit). Therefore, specific antecedent intervention techniques, grouped by modality, will be the focus of the present review.

**Verbal and Auditory Techniques**

**Verbal and other auditory cues.** Perhaps the most simple intervention approach, in terms of teacher resources and the ongoing classroom ecology, is to manipulate a typical verbal prompt (e.g., “It’s time to go to art now.”) to make the cue more salient to the individual. Tustin (1995) manipulated the timing of verbal requests to signal transition between activities. An adult male diagnosed with autism was exposed to two conditions: an advanced warning condition in which the client was informed 2 min prior to the actual transition, and a condition wherein the individual was given no advance warning. Stereotypic behavior was lower in the advanced warning condition when compared to the no-warning condition, lending credence to Flannery and Horner’s (1994) predictability hypothesis.

In addition to verbal cues in isolation, other forms of auditory cues such as tones and alarms can be used to signal students to initiate transitions. Ferguson, Ashbaugh, O’Reilly, and McLaughlin (2004) trained students with severe behavior disorders to respond to a ringing bell as a cue to “freeze” and listen for a verbal prompt to clean up and move to circle time. The use of the auditory cue and reinforcement for appropriate behavior resulted in significant decreases in time spent in transition. It should be noted that none of the participants in Ferguson et al.’s study were diagnosed with autism. However, Sainato, Strain, Lefebvre, and Rapp (1987) did include three students with autism and found that transition time decreased when the students were taught to respond to a verbal prompt from the teacher to move to the next activity and then to ring a bell located at the next activity setting. Although not compared independently, the authors reported that the combination of the verbal prompt and bell reduced transition times for all students. The Ferguson et al. and Sainato et al. studies demonstrate that adjunctive auditory techniques may serve as effective cues to signal impending transitions; however, these types of cues are more intrusive to the classroom environment and may not be easily portable to other settings. Thus, it is recommended that such techniques always be paired with a verbal prompt so that the artificial prompt can be faded over time.

**Behavioral momentum.** In addition to verbal prompts and other auditory cues, one additional intervention—behavioral momentum—deserves mention as a verbal technique to decrease problem behaviors during transitions. Behavioral momentum involves interspersing requests and/or
activities with a high probability of compliance with tasks/activities that have a low probability of compliance (Nevin, 1996). Although behavioral momentum procedures are slightly more intrusive than simple verbal prompting alone, they are particularly well suited for transitions in which the student is expected to move from a more reinforcing activity to a less reinforcing activity. Singer, Singer, and Horner (1987) used behavioral momentum with four students exhibiting problem behavior associated with transitions from the playground to the classroom. Decreases in problem behaviors were noted when students were presented with a series of high-probability requests (e.g., “Give me five,” “Say your name”) before issuing the command to transition inside. It should be noted that participants in Singer et al.’s study were not diagnosed with autism. However, behavioral momentum has been used successfully to increase compliance among children with autism (e.g., Ray, Skinner, & Watson, 1999; Romano & Roll, 2000), and thus may be applicable to compliance with transitions as well.

Despite limited empirical application to the transition literature, behavioral momentum is a potentially strong, easily implemented technique. However, one caution should be noted. When using behavioral momentum as an intervention for any problem behavior, including transitions, it is important that the educational staff and any other intervention agents (e.g., parents) ensure that a random sequence and a variety of high-probability requests are used. Some research suggests that continually presenting a small number of high-probability requests in the same order reduces appropriate student responding and may increase problem behavior (Davis & Reichle, 1996; Zarcone, Iwata, Mazaleski, & Smith, 1994).

Although limited, the available evidence suggests that antecedent intervention techniques that incorporate verbal and/or auditory cues or use behavioral momentum can effectively reduce problem behaviors during transitions. An advantage of these techniques is that they are simple and efficient. However, a disadvantage noted by many researchers is that a heavy reliance on verbal and auditory cues may result in behaviors that are solely under the stimulus control of the prompt (MacDuff, Krantz, & McClannahan, 1993). That is, the desired behavior only occurs in the presence of the prompt; therefore, the student may become dependent on the prompt, which limits the likelihood of cue fading and generalization. In addition, some researchers have suggested that visual cues should also be incorporated into interventions to address transition difficulties given the deficits in communication associated with autism (Dettmer, Simpson, Myles, & Ganz, 2000; Quill, 1997). Although there are no comparative studies to support this recommendation, it may still prove beneficial to consider visual cues as an intervention component. A brief review of interventions using antecedent visual techniques follows.

Visual Supports

**Pictorial/photographic cues.** As with verbal prompts, a simple visual cue may serve as an effective signal for appropriate transitioning behavior. Schmit et al. (2000) used picture cards to cue transitions for a 6-year-old male student with autism. The student was primarily nonverbal and engaged in tantrum behaviors and aggression during transitions. A multiple baseline across settings design was used to evaluate treatment effects from (a) activity to activity within the classroom, (b) outside to inside (i.e., recess), and (c) the classroom to the library. In baseline, physical guidance was provided contingent on tantrums or failure to walk independently to the next activity within 5 s of the teacher’s request. In intervention, the teacher presented a photograph of the next activity simultaneously with the verbal cue to transition. Again, physical guidance was provided contingent on problem behaviors or noncompliance with the teacher’s request. Intervention data revealed the procedure was effective across the three transition activities, and treatment effects were maintained over time. It should be noted that treatment gains took longer to achieve in the transition activity from the playground to the classroom, perhaps because the playground was a
more preferred setting than the classroom (Schmit et al.). The authors did not conduct a formal functional assessment; doing so may have provided additional information and intervention elements to incorporate during this transition.

Schmit et al.’s (2000) results suggest that visual cues may be effective for increasing compliance with transitions, particularly for individuals with communication deficits. However, if the student’s educational goals include improving receptive communication skills, verbal prompts should be paired with the visual cue. Over time, the visual prompt can be faded and stimulus control can be transferred to the verbal prompt.

**Activity schedules.** Although a single visual prompt may be effective in addressing problems during transitions, practitioners may wish to integrate visual cues for transitions within an activity schedule. Activity schedules have been shown to be effective in increasing independent, functional skills in students with autism (MacDuff et al., 1993; McClannahan & Krantz, 1999). Programs such as the Treatment and Education of Autistic and Related Communication Handicapped Children (TEACCH; Schopler & Mesibov, 1995) also use structured activity schedules to decrease problem behaviors throughout the day, especially during transitions.

A few studies have specifically addressed activity schedules as an intervention for transition difficulties. Dettmer et al. (2000) used activity schedules to improve the transitioning behaviors of 2 students with autism. One participant had a picture schedule mounted in the car and a portable activity schedule to provide cues about upcoming community events. The use of these aids decreased the amount of time spent in transitions. A second student had an activity schedule to provide structure for at-home early intervention services. The use of the schedule plus a timer to signal the end of activities decreased verbal and physical prompts to transition to the next activity as well as time spent in transitions.

More recently, Dooley, Wilczenski, and Torem (2001) used an activity schedule plus an edible reinforcer to decrease aggression and tantrums associated with transitions for a 3-year-old student with autism who was enrolled in a preschool setting for children with disabilities. The student removed pictures from his visual schedule to request transition to a new activity. Once the student completed the activity, he placed the picture in a container and received reinforcement in the form of a pretzel. After the teacher signaled the end of an activity both verbally and by turning the lights on and off (the typical classroom routine), the student was to return to the activity schedule and retrieve the picture for the next activity. Intervention data showed that the activity schedule plus edible reinforcer condition was successful for decreasing problem behaviors and increasing compliance within six sessions. Beginning in the seventh treatment session, the edible reinforcer was withdrawn, and treatment effects were maintained using the activity schedule alone, suggesting that the appropriate behavior was under control of the schedule and not the availability of the reinforcer.

As mentioned previously, one potential advantage of activity schedules is that they may facilitate students’ independence in transitioning from one activity to another—an educational goal for many students with autism. However, although some students will complete the activities comprising the schedule without difficulties, they may not move from one activity to the next without additional prompting. In such cases, employing additional intervention components that not only raise the probability of correct transitioning behaviors but also promote independent, functional living skills should be considered. One such example is reported by Newman et al. (1995), who incorporated a self-management technique with an activity schedule to increase the independent transitioning behavior of 3 adolescent males diagnosed with autism. None of the students exhibited problem behaviors associated with transitions. However, each rarely initiated transitions to different activities, even in the presence of an activity schedule and despite the fact...
the students could tell time. In baseline, the activity schedule and a digital clock were present, and students were asked to alert the teacher when it was time to move to another activity for a total of seven 25-min blocks occurring during the day. In the treatment condition, students self-reinforced with tokens for identifying transition times accurately. Tokens were later exchanged for a variety of activity reinforcers. Initially students were prompted to self-reinforce for identifying transitions appropriately; prompts were removed after the sixth session for all students. All students increased their independent identification of transitions using the self-management procedures, although students were inconsistent in their accuracy of self-reinforcement. Treatment gains were maintained at follow-up as well.

In summary, visual cues and activity schedules can be useful interventions for addressing problem behaviors during transitions, especially for students who may present with communication deficits. An added advantage of these techniques is that they may more readily promote independent functioning because, unlike auditory and verbal cues, they do not require the presence of another individual for implementation. More recently, a related visual cueing method involving video technology has begun to gain attention for teaching and modeling skill sequencing. As a result, video priming applied to transitions may share many of the advantages of activity schedules but with an added advantage of modeling timely and appropriate transition behaviors.

**Video Priming**

As with activity schedules, video technology may prove to be a valuable, time-efficient intervention technique to teach functional daily living skills to students with autism (Carothers & Taylor, 2004). In a unique application of an antecedent intervention to address transition difficulties, Schreibman et al. (2000) used videotape modeling to decrease problem behaviors associated with transitioning for 3 students with autism. The specific challenging behaviors included whining, pulling against parents or therapists to resist the transition, crying, screaming, aggression, verbal resistance (e.g., “No!”), and dropping to the ground.

All students who participated in Schreibman et al.’s (2000) study presented with transition difficulties in community settings. Operating on the predictability hypothesis, the authors suggested that allowing students to watch videotapes of an upcoming event would make the event more predictable. A videotape was developed for each student in which a routine (e.g., getting ready to leave the house) or route (e.g., going through the mall) was shown. Each child watched his videotape prior to beginning the activity. Schreibman et al. also included two additional conditions in their study. An irrelevant video condition, in which the child watched a video that did not depict the upcoming event, was used to control for treatment effects associated with simply watching a video prior to the problematic activity. Second, a no-video condition was included to assess generalization effects. The magnitude of treatment effects were variable across the 3 participants; however, the overall results suggested that video priming decreased problem behaviors associated with transitions. Generalization effects in the no-video condition setting also were noted once problem behaviors decreased in the trained video conditions. The authors anecdotally noted that as problem behavior decreased, each student increased his or her use of language and became more engaged with environmental stimuli during the community outings.

Preliminary studies support interventions using visually based cues for reducing problem behavior during transitions and have great potential for promoting independent living skills among students with autism. However, additional comparative research of the efficacy and efficiency of visual schedules and video-based interventions is needed specifically addressing the utility of these procedures for addressing transition times.
Summary of Research Findings

The available, published investigations addressing transitions all report positive treatment effects for a variety of challenging behaviors. In addition, the reviewed techniques have been shown to decrease transition times and increase independent initiations of transition activities. The studies all employed small sample sizes, which is not surprising. Although some may argue that the small sample sizes limit the utility of the reported results, the majority of the studies employed strong single-case design elements to support their findings.

The research area of transition programming is in its infancy, and further studies are needed. As noted, the majority of research examples have focused on antecedent manipulations. Although individual studies have shown positive treatment effects, some have included antecedent manipulations only (Dettmer et al., 2000; Sainato et al., 1987; Schmit et al., 2000; Schreibman et al., 2000; Tustin, 1995), whereas some have included both an antecedent and consequent components (Dooley et al., 2001; Ferguson et al., 2004; Newman et al., 1995). Thus, comparative analyses of antecedent techniques, antecedent techniques with and without consequent components, as well as other component analyses of intervention packages should be undertaken. Further investigations of interventions incorporating behavioral momentum are also encouraged. Finally, and somewhat surprisingly, there are surprisingly few examples of interventions that are based on functional assessment information. Despite the lack of systematic research, practitioners are in need of practical recommendations for assessing and intervening with students who demonstrate difficulties with transitions. In the final section of the current article, we will address potential steps a practitioner may wish to employ for addressing transitions in school-based settings.

Application and Recommended Resources

First and foremost, practitioners should keep in mind that learning to transition between activities is a skill that must be learned like any other skill. Thus, to decrease the probability of challenging behaviors during transitions, the educational environment should be arranged to promote appropriate, desired responding. Sainato (1990) provides a number of excellent recommendations for practitioners and other educational professionals planning for transition activities in the classroom setting, regardless of whether or not students present with transitional difficulties. First, teachers should consider the amount of time a transition should take as well as any additional demands (e.g., hand washing) that may be associated with the transition. Sainato also recommends that teachers plan transitions that decrease “wait time” for students and maximize the amount of time spent engaging in activities. For example, when multiple children must transition between activities, the teacher should have an adult at each activity or setting so that as students arrive at the second setting they may begin the next activity as opposed to waiting for all of the students and the teacher. Finally, educators should systematically teach students desired transitioning behaviors through modeling, rehearsal, and feedback, so that each student understands the expected behaviors.

If activity schedules are used as a systematic component to structure the day’s activities, they often should include a representation (visual icon) of transition times and the activities involved in the transition (Sainato, 1990). For example, an activity schedule might include the following steps: (a) arrive at school, (b) eat breakfast, (c) reading time, and (d) free time. Between the activities of arriving at school and eating breakfast, activities might include taking off one’s coat, putting away a lunch box, washing hands, and coming to the table. Similarly, throwing away trash, returning to the table, and taking out reading materials might follow eating breakfast and precede reading activities. Incorporating the activities involved in each transition between the listed activities may serve to make the transition more predictable to the student. As students become more efficient and fluent in each transition, the individual steps can be faded to promote independent functioning.
Despite the best laid plans for transitions in the classroom, a child still may present with difficulties during transitions. In such cases, the first step in addressing problem behaviors associated with transition difficulties is to conduct a functional assessment. The initial stage of the functional assessment would be to examine and gather data for the most problematic transition times to determine what may be unique about those transitions. The first question a practitioner should consider in the assessment is whether the transitions are predictable and consistent. Flannery, O’Neill, and Horner (1995) present a further discussion of potential questions to ask when assessing factors relating to the predictability of transitions and activities occurring in school, home, and community settings. If the data suggest that classroom routines are not predictable, environmental engineering techniques such as those described by Sainato (1990) should be undertaken. If problem behaviors persist once activities and transitions between activities are predictable, the practitioner may wish to examine other factors that may interfere with successful transitioning behaviors. For example, the timing of cues may need to be manipulated in order to provide an advance signal of upcoming transitions.

In addition to testing the predictability and consistency of routines, educators and behavioral consultants should investigate the impact of other variables that maintain problem behaviors associated with transitions. For example, the nature of the activities may be a contributing factor. The number of steps involved in a task, the length of a task, as well as the reinforcing value of the activity should be examined. Likewise, task sequencing may be a maintaining variable. In such cases, manipulations of task order or incorporating interventions that allow for choice-making opportunities may be a viable solution.

In addition to assessing task variables, specific persons as well as the number of persons involved in the activities and transitions should be considered. In some cases a student may be moving from a setting in which access to preferred individuals is no longer available or there are reduced opportunities to engage with preferred individuals. Alternatively, there may be too many individuals in the upcoming activity or involved in the transition, which may be aversive to individuals who are socially avoidant.

The above examples by no means represent an exhaustive list of potential maintaining or contributing variables for transitional difficulties. Rather, the examples are an illustrative sample of factors that may need to be examined in a functional assessment. Careful interviewing and observation will direct the educator and behavioral consultant down potential avenues that will lead to the generation of hypotheses regarding functional relationships. These hypotheses should then be systematically assessed and validated. A thorough discussion of functional assessment procedures is beyond the scope of this article; however, the reader is directed to Kern and Vorndran (2000) and McCord et al. (2001) for excellent research examples employing functional analyses during transition times.

After confirming hypotheses generated in the functional assessment, interventions should be implemented and evaluated. In keeping with a person-centered planning approach, practitioners are encouraged to use Flannery et al.’s (1995) three considerations for treatment design. First, those individuals involved in treatment planning should determine what is important to the individual with autism. Ideally, the student is included in this process where and when appropriate. Such discussions may assist in the identification of reinforcers that can be incorporated into treatment planning as well as selection of an appropriate intervention approach. As always, the intrusiveness of the intervention should be considered. That is, the least intrusive, most effective treatment possible should be used. In the case of antecedent interventions addressing transitional problems, verbal prompts are less intrusive. However, as previously noted, verbal prompts may be less salient to students with communication deficits.

Second, and related to the above example, the manner in which an individual best receives information should be considered in treatment planning (Flannery et al., 1995). If it is determined...
that a prompt should be used to increase appropriate responding during transitions based on available data, educators and consultants should determine the nature of the prompt to be used. Verbal prompts should only be used when the individual has adequate receptive language skills to respond appropriately. If auditory cues are to be incorporated, teachers are encouraged to use a cue that can be easily faded once appropriate responding has increased (Sainato, 1990).

Finally, Flannery et al. (1995) recommended that interventionists consider techniques and strategies that have a high probability of maintenance and generalization. Interventions that promote independent functioning should be considered, as the ultimate goal of our educative efforts is to produce independently functioning members of society. Based on the available research, there is some evidence that activity schedules and video-based interventions may be ideally suited to this end, but additional data are needed supporting the effectiveness of visual schedules for transitioning activities.

In addition to the above considerations, educators and consultants must always consider the amount of resources required to implement and maintain an intervention. Ideally, interventions should be selected that can be easily incorporated into the ongoing classroom ecology. For example, adding transitions or incorporating self-management to an existing, effective activity schedule is more resource efficient than creating a video to cue upcoming transitions. However, using a video cueing procedure to assist with transitional difficulties in community outings may be more resource efficient than taking repeated trips into the community setting and using an activity schedule to prompt the student through each step of the activity. Finally, teachers and consultants should also consider whether the selected intervention procedure will require more intensive training. All individuals involved in the resultant treatment plan must be adequately trained to ensure integrity to the selected procedure. Without integrity, treatment effects or lack thereof cannot be evaluated.

Conclusions

Several antecedent verbal and visual techniques have been presented in the research literature, each with its respective, relative strengths and weaknesses. As noted numerous times throughout this review, research studies evaluating interventions targeting transitioning difficulties among individuals with autism are very limited. Interventions based on functional analysis information are lacking as well. The lack of research makes it difficult to provide definitive, sound recommendations for intervention. However, it does serve as notice to the academic, research, and practice-oriented community for additional research, given that transitional difficulties are often cited as a problematic behavior associated with the diagnostic criteria for autism. Developing empirically supported assessment procedures and intervention recommendations for problem behaviors associated with transitions may have positive side effects, including increased instructional time (thus more learning opportunities for the student with autism), increased independence as the need for adult supervision decreases, and generalized effects to other settings.

References


Copyright of Psychology in the Schools is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.